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We consider turbulent advection of a scalar fieldT(r ), passive or active, and focus on the statistics of
gradient fields conditioned on scalar differencesDT(R) across a scaleR. In particular we focus on two
conditional averageŝ¹2TuDT(R)& and^u¹Tu2uDT(R)&. We find exact relations between these averages, and
with the help of the fusion rules we propose a general representation for these objects in terms of the
probability density functionP(DT,R) of DT(R). These results offer a way to analyze experimental data that
is presented in this paper. The main question that we ask is whether the conditional average^¹2TuDT(R)& is
linear inDT. We show that there exists a dimensionless parameter which governs the deviation from linearity.
The data analysis indicates that this parameter is very small for passive scalar advection, and is generally a
decreasing function of the Rayleigh number for the convection data.@S1063 -651X~96!11312-X#

PACS number~s!: 47.27.2i

I. INTRODUCTION

The equations of motion in fluid mechanics, be they for
the velocity fieldu(r ,t) or for a scalar field like the tempera-
ture T(r ,t), contain interaction terms likeu–“u or u•“T,
and dissipative terms liken¹2u or k¹2T, with n and k
being the kinematic viscosity and the scalar diffusivity, re-
spectively. Accordingly, when one attempts to derive a
theory of correlation functions of the field or of field differ-
ences across a length scaleR, one runs into mixed correla-
tion functions of the Laplacian of the field with the field
itself. The Laplacian introduces a dependence on dissipative
scales, and it is not obvious how to construct a closed theory
in terms of correlation functions that depend on ‘‘inertial’’
distances only. At this point there are two fundamentally
different approaches that we want to expose first. We exem-
plify these approaches in the context of turbulent advection,
but similar considerations also apply to Navier-Stokes turbu-
lence.

One fundamental strategy, which is the more usual one, is
to consider the structure functions of the field differences.
DenotingDT(r ,r 8,t)[T(r 8,t)2T(r ,t), the structure func-
tionsSn(R,t) are defined by

Sn~R,t !5^@DT~r ,r 8,t !#n&, R5uRu[ur 82r u, ~1!

where the homogeneity and isotropy of the ensemble were
assumed. Using the advection equation

]T

]t
1u•“T5k¹2T, ~2!

one can derive the equation of motion forSn(R,t):

]Sn~R,t !

]t
1Dn~R,t !5Jn~R,t !, ~3!

where

Dn~R,t !52n^@u~r ,t !•“DT~r ,t !#@DT~r ,r 8,t !#n21&, ~4!

Jn~R,t !522nk^¹2T~r ,t !@DT~r ,r 8,t !#n21&. ~5!

In the stationary stateSn(R,t)→Sn(R), Dn(R,t)→Dn(R),
and Jn(R,t)→Jn(R), and we have a ‘‘balance equation’’
Dn(R)5Jn(R).

The obvious advantage of this approach is that it involves
objects that depend on one coordinateR only. On the other
hand the analysis of the balance equation requires a theory of
theviscoustermJn which involves a correlation between the
Laplacian of the field and field differences. Even whenR is
within the inertial range, one cannot get rid ofJn(R). The
limit k→0 does not help;Jn has a finite value in this limit.

A second fundamental approach which avoids this diffi-
culty @1# employs multipoint correlation function of field dif-
ferences. Starting from the same field differences
DT(r1 ,r18 ,t), one defines the correlation function

Fn5Fn~r1 ,r18 ; . . . rn ,rn8 ;t ![^DT1 , . . .DTn&, ~6!

which depends onn fields DTj[DT(r j ,r j8 ,t), 2n coordi-
natesr j , r j8 and timet. The equation of motion forFn looks
superficially similar to Eq.~3!:

]Fn
]t

1Dn5Jn , ~7!

where

Dn5Dn~r1 ,r18 ; . . . rn ,rn8 ;t !

5(
j51

n

^DT1 . . . @u~r j8!•“ j 8T~r j8!

2u~r j !•“ jT~r j !# . . .DTn&, ~8!

Jn5Jn~r1 ,r18 ; . . . rn ,rn8 ;t !

5k(
j51

n

~¹ j
21¹ j 8

2
!^DT1 . . .DTj . . .DTn&. ~9!
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In the stationary state we again face a ‘‘generalized balance
equation’’Dn5Jn . In fact, there is a fundamental difference
between the two approaches. In the present case one can
analyze the generalized balance equation, keeping all the
separations within the inertial interval of scales. Then we can
take the limitk→0 and show@1# that the dissipative term
Jn vanishes in the limit. We remain in this limit with a
homogeneous equationDn50, without any Laplacian terms.
The advantage is that in principle we have a complete theory
without the need of additional input. The obvious disadvan-
tage of this approach is that we have functions of many vari-
ables. Nevertheless, this approach turned out to be very use-
ful in the context of Kraichnan’s model for passive scalar
advection @2#, where the homogeneous equation can be
turned into a linear partial differential equation for the cor-
relation functionsFn . However even in this simplest pos-
sible case the difficulty incurred by having functions of many
variables led to contradicting arguments about the relevant
physical solution. A number of groups attempted a perturba-
tive solution around tractable limits@3,4#, and found results
that were in contradiction with numerical simulations and
other theoretical arguments@5,6#, including nonperturbative
ones@7#. The final answer is not yet at hand.

It is thus obviously useful to find ways to analyze the
simpler version in which we have one variable only, but a
mixture of inertial and dissipative scales contributing to the
correlation functionJn . To proceed we need additional in-
formation. One possible way of inputting this information is
in the language of conditional averages. To see this, consider
the mean value of thek¹2T condition onDT:

H~DT,R![k^¹2T~r !uDT~r ,r 8!&. ~10!

Using this definition, we rewriteJn(R) as

Jn~R!522nE dDTP~DT,R!@DT#n21H~DT,R!, ~11!

whereP(DT,R) is the probability density function~pdf! to
find a temperature differenceDT across a separationR. It
was proposed by Kraichnan@8# that the conditional average
H(DT,R) exhibits in his model a very simple functional de-
pendence onDT and onR, i.e.,

H~DT,R!5
2J2DT~R!

4S2~R!
. ~12!

If this were true,Jn(R) could immediately be written in
terms of structure functions,

Jn~R!5
nJ2Sn~R!

2S2~R!
. ~13!

This again closes the theory upon itself, allowing one to
proceed in terms of objects that depend on inertial scales
only. In the Kraichnan model,Dn can also be written in
terms ofSn(R) @see Eq.~25! below# and one can therefore
find the scaling exponents that characterize the structure
functions. Unfortunately there is still no derivation of the
ansatz~12!. There are indications that it is obeyed; numerical
simulations of the Kraichnan model support it rather con-
vincingly @5#. In addition, it was shown in@9#, on the basis of

experimental data analysis, that this form of the conditional
average is obeyed in a context that is much wider than the
Kraichnan model. Experiments on turbulent advection were
analyzed, and good agreement with Eq.~12! was demon-
strated. The aim of this paper is to present further theoretical
and data analysis in this direction. We want to understand
what can be said on conditional averages in terms of funda-
mental theory, and how to analyze experimental data intelli-
gently to probe these important quantities.

It should be pointed out that although we focus in this
paper on turbulent advection, similar considerations are also
important in the context of Navier-Stokes turbulence. Also in
that case, two fundamental strategies to develop a statistical
theory are open to us. The second strategy is even more
tempting in that context. In the first approach one obtains
objects depending on one coordinate, but a hierarchy of
equations relating different order~in powers of the velocity
field! correlation functions. The second strategy gives a
theory involving many coordinates, but in which we can also
neglect the viscous term, obtaining homogeneous equations
Dn50 that involve only one order of correlation functions.
We are not going to explore this issue further, and refer the
reader to@1# for more details.

The paper is organized as follows: In Sec. II we present
theoretical considerations that relate conditional averages
with the probability density function. The fusion rules are
employed to develop a general representation of the condi-
tional average~10! in terms of the pdf ofDT(R). It is shown
that in generalH(DT,R) can be written as an expansion in
noninteger powers ofDT, with the first term being linear,
and with dimensionless coefficients that are denoted
a0 ,a1 . . . , seeEqs. ~22! and ~23!. In Sec. III we analyze
experimental data of passive and active scalar advection,
with the aim of understanding whether the linear term in our
expansion is leading, and whether the rest of the series is
unnecessary. We offer conclusions in Sec. IV: it turns out
that for passive scalar advection the linear fits are excellent,
whereas in the case of active convection the linear form ap-
pears to fit the data extremely well for high values of the
Rayleigh numbers~Ra!. For lower values of Ra there are
significant nonlinear contributions, and we show that the pro-
posed method of data analysis offers excellent fits to the
data.

II. CONDITIONAL AVERAGES
AND THE RELATIONS BETWEEN THEM

A. Conditional average of the dissipation field

In addition to the conditional average~10!, we will con-
sider the average of the scalar dissipation fieldku“Tu2 con-
ditioned onDT:

G~DT,R!5k^u“Tu2uDT~r ,r 8!&. ~14!

This conditional average appears naturally in the analysis of
Jn(R). For space homogeneous statistics one can move one
gradient around in the definition~5! and, forR in the inertial
range, obtain

Jn~R!;22n~n21!k^u“T~r !u2@DT~r ,r 8!#n22&. ~15!
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Accordingly, we can write a second equation in terms of the
probability density function

Jn~R!522n~n21!E dD TP~DT,R!@DT#n22G~DT,R!.

~16!

By equating Eqs.~16! and ~11!, we find an infinite set of
integral constraints on the conditional averages. This implies
that the two conditional averagesH andG must be univer-
sally related in order to satisfy these constraints for any value
of n. The required relationship involves the pdfP(DT,R)
and has the following form:

H~DT,R!P~DT,R!52
]

]DT
@G~DT,R!P~DT,R!#,

~17!

as can be checked by direct substitution. A formula of this
form has been discussed before in@10#.

B. Fusion rules and their consequences

An additional constraint on the conditional averages can
be obtained using the ‘‘fusion rules’’ that were derived re-
cently. These rules serve to find relationships between the
two fundamental approaches described in Sec. I. Specifi-
cally, the fusion rules address the asymptotic properties of
Fn when a group ofp points,p,n21 tend toward a com-
mon point r0 (ur i2r0u;r for all i<p), while all the other
coordinates remain at a larger distanceR from
r0 (ur i2r0u;R for i.p, andR@r). For our particular pur-
poses we need to writeJn(R) as the result of the following
fusion process:

Jn~R!522nk lim
r i→r0

lim
r i8→r01R

“ r1
2 Fn~r1 ,r18 ; . . . rn ,rn8!.

~18!

The fusion rules that should be used in such cases were dis-
played in great detail in@1# in the context of Navier-Stokes
turbulence. They also apply identically to this case. Basically
it was shown that all the fusions without gradients in this
case have regular limits, relatingFn with Sn . The fusions
with gradients require special care of the limit
r12[r12r2→0. The intermediate result, forR in the inertial
range, is

Jn~R!;22nk lim
r12→0

“ r1
2 S2~r 12!Sn~R!/S2~R!. ~19!

In evaluating this quantity we interpret the limitr12→0 as a
limit r 12→h. This seems natural for large Peclet numbers
whenh→0. It is important however to stress that there is a
hidden assumption here. We expect the functionF2n to
change its analytic behavior as a function ofr 12. This
change occurs at the viscous crossover scaleh. The issue is
whether this crossover scale isn andR independent. That
this is so has beenprovenfor Kraichnan’s model of turbulent
advection@11#, and that this isnot so has been proven for
Navier-Stokes turbulence@1#. We believe that this is more
generally true in scalar advection due to the linearity of the
equation of motion~2!, independently of the statistical prop-

erties of the driving velocity field. The experimental results
analyzed in@9# strongly indicate that this is the case in a
wide context of turbulent scalar fields. With this in mind we
write

Jn~R!;22kn@¹ r12
2 S2~r 12!ur125h#Sn~R!/S2~R!. ~20!

Using the fact that the mean of the scalar dissipation field,
denoted ē, is evaluated as 2ē;k@¹r

2S2(r)ur5h#,
and also the fact that in the inertial rangeJ2(R)524ē, we
write

Jn~R!5
nCnJ2Sn~R!

2S2~R!
, ~21!

whereCn is an as yet unknown dimensionless coefficient,
but C251. Equation~21! was suggested for Kraichnan’s
model in @8# and derived in@6#. We proposed in@9# that it
holds in a much wider context, and showed experimental
data in support.

Having result~21!, we see that the scaling exponent of
Jn(R) is fixed aszn2z2. One way to understand this is to
assume that indeed Eq.~12! is always valid, and to use it in
Eq. ~11! to derive this scaling law. In this case Eq.~21! is
recovered with the constraint that the coefficientsCn are all
unity, and in particularn-independent. However, we need to
allow for the possibility that Eq.~12! is incorrect, and find
alternative representations of the conditional average that
agree with the scaling law~21!. This is the subject of the
next subsection.

C. Series expansion of the conditional average

Let us reject for the time being the possibility that
H(DT,R) is proportional toDT(R) with a coefficient de-
pending only onR. Alternatively, let us consider the follow-
ing model expression forH(DT,R):

H~DT,R!52
J2

4S2~R!

L̂$DTP~DT,R!%

P~DT,R!
. ~22!

Here we introduce the dimensionless operatorL̂ acting on
the variableDT(R) as a sum of differential operators:

L̂5 (
p50

`
ap
p! F ]

]DTG p~DT!p. ~23!

In this representation there is the freedom of a countable set
of dimensionless coefficientsap .

From the dimensional point of view,H(DT,R) in Eq.
~22! is of the order ofDT, but it has a more complicated
functional dependence onDT andR, expressed in terms of
the pdf P(DT,R) with the help of operatorL̂. Computing
Jn(r ) with H given by Eq.~22!, one obtains Eq.~21!, as one
should, but with coefficientsCn given by

Cn5 (
p50

n21 S n21

p D ~21!pap . ~24!

Here
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S n21

p D 5
~n21!!

p! ~n2p21!!

are binomial coefficients. We have one obvious constraint,
i.e.,C25a02a151. One sees that by an appropriate choice
of ap , an arbitrary dependence ofCn on n is possible.

To exemplify the consequences of this extra freedom, we
will next analyze the implications it has on the scaling expo-
nents of the Kraichnan model of passive scalar convected by
an infinitely fast Gaussian velocity field. In this case the term
Dn(R) is known exactly,

Dn~R!5
B

Rd21

d

dR
Rd211zh

d

dR
Sn~R!, ~25!

wherezh is the parameter of the model, 0,zh,2, andB is
a dimensional constant. Using the balance equation and writ-
ing Sn(R)}R

zn, one computes

zn5
1
2A~d2z2!

212ndz2Cn2
1
2 ~d2z2!. ~26!

If all coefficientsa(m>1) are zero, thenCn51 and we have
Kraichnan’s conjecture forzn :

zn5
1
2A~d2z2!

212ndz22
1
2 ~d2z2!, ~27!

which dictates the ‘‘square-root’’ asymptotic behavior
zn→Andz2/2 in the limit n→`. Assume now that onlya0
anda1 are nonzero. From Eq.~24!, Cn5a02(n21)a1, or

Cn512~n22!a1 , ~28!

and if we use this result in the Kraichnan model we obtain

zn5
1
2A~d2z2!

212ndz2@12~n22!a1#2 1
2 ~d2z2!. ~29!

Now the asymptotics ofzn in n are linear:zn}nA2a1 for
n→`. Notice that in this case,a1 has to be negative. It is
interesting to note that the assumption that only the first three
coefficientsa0, a1, and a2 are nonzero would lead to the
conclusion thatzn}n

3/2, which is not allowed in view of the
Hoelder inequalities for the scaling exponents. Similarly, one
cannot truncate series~23! at any higher term. Hence only
three possibilities are allowed for this representation of the
conditional average:

~i! Only a0 is nonzero, and we have Kraichnan’s expo-
nents~27!. In this case we expect to find alinear law

H~DT,R!52
J2

4S2~R!
DT~R!. ~30!

~ii ! Only a0 anda1 are nonzero, and we have the expo-
nent ~29!. Note that Eq.~28! determines the coefficientsCn
in this case, and the magnitude of the dimensionless param-
etera1 measures the deviation ofCn from unity. We will see
below that in all high Re dataa1 seems to be smaller than
1022.

~iii ! There is an infinite set of nonzero coefficientsap .
It is interesting to ask whether one can come up with an

example of infinitely many coefficientsap without violating

any general requirement about the scaling exponents. In fact,
this can be easily done. For example, chooseap of the fol-
lowing form:

ap5(
s

bs@12exp~2as!#
p1dp0m2dp1n, ~31!

and substitute in Eq.~24!. The result is

Cn5m1~n21!n1 (
p50

n21 S n21

p D(
s

bs~e
2as21!p. ~32!

Finally it gives

Cn5m1~n21!n1(
s

bsexp@2~n21!as#, ~33!

wich satisfies the constraint

C25m1n1(
s

bsexp~2as!51. ~34!

In the limit n@max@1/as#, we find

zn5
1
2A~d2z2!

212ndz2@m1~n21!n#2 1
2 ~d2z2!.

~35!

This form again has an asymptotic linear dependence ofzn
on n, but for intermediate values ofn these exponents differ
significantly from Eq.~29!. We do not ascribe particular im-
portance to this result, and exhibit it only to show that, to
satisfy the consequences of the fusion rules, in general we
have considerable freedom in the functional dependence of
zn on n.

It is important to understand now that the series~22! is
actually an expansion innoninteger powersof DT. As such,
it is fundamentally different from the series proposed in Ref.
@5#, which is in integerpowers. The noninteger powers are
dictated by the functional form of the pdfP(DT,R), which
in general is nonanalytic. In order to see this clearly, we
consider, for example, a formP(DT,R) that has been found
@12# to fit very well the experimental data for turbulent tem-
perature fluctuations. For different separationsR, the pdf is
described by the following stretched-exponential form:

P~DT,R!5C~R!exp@2a~R!uDTub~R!#. ~36!

Substitution of this into Eq.~22! gives a series innoninteger
powers ofDT which originate from the differentiation of
(DT)b. Any attempt to reexpand the series in (DT)mb for
nonintegerb in integerpowers ofDT leads unavoidably to a
series with zero radius of convergence.

III. IS THE CONDITIONAL AVERAGE H „DT,R…
LINEAR OR NONLINEAR IN DT?

As we already saw, the present state of the theory does
not allow anab initio determination of the functional depen-
dence of the conditional averageH onDT. Accordingly, we
now turn to analyzing experimental data to shed light on this
issue. As explained, the conditional averageH(DT,R) is lin-
ear inDT if and only if all the coefficients excepta0 are zero
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@i.e. possibility ~i! discussed in Sec. II#. For the other two
cases,H(DT,R) is a nonlinear function ofDT. In earlier
work @9#, we found thatH(DT,R) is close to a linear func-
tion of DT, which implies thatap ,pÞ0 are small compared
to a0. To make more quantitative statements, we will per-
form a further analysis of the experimental data under the
assumption thata0 anda1 are nonzero. We will see that this
form fits the data extremely well, and that the coefficient
a1 is always small, and it appears to become smaller when
the Reynolds number is increasing and when the chosen
separation goes into the bulk of the inertial interval. Taking
a0 anda1 as the only nonzero coefficients, we find

H~DT,R!5
2J2DT

4S2~R! H ~a012a1!1a1DT
]@ lnP~DT,R!#

]DT J .
~37!

Thus the coefficienta1 indeed measures how nonlinearH is.
Using form~36! for the pdfP(DT,R), H can be rewritten as

H~DT,R!5
2J2DT

4S2~R!
@~113a1!2a1a~R!b~R!uDTub~R!#,

~38!

in which a0511a1 is used. WhenP(DT,R) is asymmetric,
a more general form with differenta andb for DT.0 and
DT,0 has to be used. Note that if we measureDT in units
of its standard deviation~as we do below in the data analy-
sis!, then the combination of parametersa1a(R)b(R) gives
a direct measure of the importance of the nonlinear correc-
tion in this equation forDT51.

A. Linear fits

We begin the discussion of experimental data by demon-
strating that in the case of passive scalar advection the linear
form of the conditional averageH(DT,R) is observed to
high precision. First we examine the theoretical prediction
~21!. The results show that to a good accuracyCn'1 for all
n andR @9#.

We use temperature data measured in the wake of a
heated cylinder@13#. Air of speed 5 m/s flowed past a heated
cylinder of diameter 19 mm~Reynolds number 9.53104).
The temperature was measured at a fixed point downstream
of the cylinder on the wake centerline. The cylinder was
heated so slightly that the buoyancy term was unimportant
and the temperature acted as a passive scalar. Temperature
was measured as a function of time, and here we use the
standard Taylor hypothesis that surrogates time derivatives
for space derivatives. In doing so we made sure that
the viscous scales are properly resolved in this data set. In
Fig. 1 we display J2n(R)/(2nk) as a function of
(2k)21J2S2n(R)/S2(R) for n varying from 2 to 6, and for
variousR values in the inertial range. We see that all the
points fall on a line whose slope is unity to high accuracy,
and whose intercept~in log-log plot! is very closely zero. As
was pointed out in@9#, this good agreement is a confirmation
of the validity of the fusion rules. It should be stressed that
individual tests at various values ofn as a function ofR
corroborate the same conclusion, i.e., Eq.~21! is supported
by the experimental data, withC2n being near unity. The
most sensitive test of the alleged constancy of the coeffi-

cients C2n is obtained by dividing J2n(R) by
nJ2S2n(R)/S2(R) for all the available valuesn andR. The
result of such a test is shown in Fig. 2.

We see that all the measured values ofC2n are concen-
trated within the interval (0.75,1) for separations within the
inertial interval. Considering the fact that the quantities
themselves vary in this region over five orders of magnitude,
we interpret this as a good indication for the independence of
C2n of R andn. TheR independence is very clear, and is a
direct test of the fusion rules. The weakn dependence seems
to indicate thatC2n decreases slightly withn; this may arise
from the limited accuracy of the data. We are reluctant to
make a strong claim about the accuracy of tenth- or twelfth-
order structure functions. If we accept for now the evidence
that the coefficientsC2n in Eq. ~21! are n independent, it
must also imply that the conditional averageH(DT,R) is
linear inDT.

In Fig. 3 we present results from the same data set that
was used above. We show the conditional average
H(DT,R) as a function ofDT(R) for various values ofR.

FIG. 2. A detailed test of the coefficientC2n ; see text for de-
tails. The symbols are the same as in Fig. 1. The small systematic
decrease ofC2n with n may be due to insufficient accuracy at the
tails of the probability density function which becomes more im-
portant at large values ofn.

FIG. 1. A plot of lnuJ2n(R)/(2nk)u vs lnu(2k)21J2S2n(R)/S2(R)u for
n52 ~squares!, 3 ~triangles!, 4 ~diamonds!, 5 ~stars!, and 6~circles!
andR in the inertial range. The data are taken from Yale@13#. The
line ~slope 1 and intercept 0! is not a fit but is the theoretical ex-
pectation~21! with Cn51. The logarithms are to basee.
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The line passing through the data points is not a fit, but rather
the line required by Eq.~30!. We note that points belonging
to different values ofR fall on the same line, indicating that
indeed the conditional averageH is a function ofDT(R)
times a function ofR, and that we identified correctly the
function ofR as2J2 /4S2(R).

B. Nonlinear fits

As explained, the linearity of the conditional average of
H in DT @Eq. ~30!# was not derived from first principles. We
therefore proceed now to see whether the more general form
~38! is supported by the data, and whether we can bound
from above the values of the parametera1. To estimatea1
from experimental data, we first estimatea(R) and b(R)
from the pdf’s evaluated from data using Eq.~36! then plot
24H(DT,R)S2(R)/@J2DT#E versusuDTub(R). The intercept
is given by 113a1. To study how well Eq.~38! can repre-
sent the data, we subsitute the estimated value ofa1 into Eq.
~38! and compare it with the experimental data. Since the
passive scalar data shown in Fig. 3 agree so well with the
linear ansatz, we first discuss a case that offers a more strin-
gent test of the form~38!. To this aim we consider data taken
from convective turbulence. In this case the temperature is an
active rather than a passive scalar. The data are taken from
the well documented Chicago experiment@14,15#. The ex-
periment was performed in a cylindrical box of helium gas
heated from below, and Ra can be as high as 1015. The box
has a diameter of 20 cm and a height of 40 cm. The tem-
perature at the center of the box was measured as a function
of time, and we use the same Taylor hypothesis to surrogate
time for the spatial coordinate. Figure 4 display the condi-
tional averageH(DT,R) computed from these data for three
different values of Ra, withR measured in units of the sam-
pling time. We see that Eq.~38! is always a good form for
describing the experimental data. It is interesting to examine
how the nonlinearity in the conditional average depends on
Ra and on the value ofR. In Table I we present a compila-

FIG. 3. The conditional averageH(DT,R) measured from the
Yale data@10# normalized by the measured value of2J2/4S2(R) as
a function ofDT(R) for three different values ofR measured in
units of the sampling time. The differentR values are designated by
triangles (R516), squares (R5128), and circles (R51024), re-
spectively.

FIG. 4. The conditional averageH(DT,R) as a function of
DT for the turbulent convection data. Shown are representative fits
of formula~38! at four values of Ra with the separationRmeasured
in units of sampling time using Taylor hypothesis. One sees that the
linear fit becomes better as Ra increases; see Table I for a quanti-
tative confirmation

FIG. 5. The conditional averageH(DT,R) as a function of
DT for the passive scalar data at three values of the separationR
~from top to bottomR5128, 256, and 512), measured in units of
sampling time. The nonlinear fits~solid lines! are indistinguishable
from the linear ones~dotted lines! in the bulk of the inertial range,
and see Table II for a quantitative confirmation
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tion of the best fits for the parameters for a range of values of
Ra, and for a range of values ofR. The results appear to
support the following conclusions:~1! the value ofa1 gen-
erally decreases when Ra increases; and~2! the value ofa1 is
smaller, and remains approximately constant when the sepa-
rationR is deep inside the inertial range.

A good way to have a quick estimate of the importance of
the nonlinear term@cf. Eq. ~38!# is to measurea1ab, which
is the coefficient of the nonlinear term. We see that this
coefficient decreases significantly when we go from Ra
56.03108 to Ra55.831014, becoming about 0.01 in the
middle of the inertial range.

Next we show similar detailed calculations for the passive
scalar data of Fig. 3. There is a slight complication since the

pdf’s P(DT,R) are not symmeteric inDT. Accordingly we
need to fit separately the left and right branches of the dis-
tribution functions, and find the parametersa1 , a2 , b1

andb2 , together with the appropriate values of (a1)1 and
(a1)2 . After doing all this we show the fits in Fig. 5. It
appears to the eye that the quality of the fits is not signifi-
cantly improved compared to the linear fit. To see this more
clearly, in Table II we present the values of all the param-
eters involved in the fit. It is seen that the values of the
parametersa16

are close to zero, or, more precisely,

a16
5060.02. The coefficient that measures the importance

of the nonlinear correction, i.e.,a1ab is of the order of
1024 for all the separations in the bulk of the inertial range.

TABLE II. Fitted parameters for the nonlinear fits in the passive advection data with Reynolds number
9.53104. The probability density functionP(DT,R) is asymmetric in this case, and we fit separately the left
~minus subscript! and right~plus subscript! wings. All the parameters that measure the deviation from the
linear fits are very small.

R 8 16 32 64 128 256 512 1024

b2 0.94 1.12 1.28 1.54 1.77 1.85 1.76 1.86
b1 1.15 1.32 1.56 1.63 1.75 1.82 1.87 1.82
103(a1)2 21 67 11 12 23 9 10 25
103(a1)1 18 14 21 19 26 6 0.6 12
103(a1ab)2 10 16 3 1 20.4 0. 0.2 20.4
103(a1ab)1 1.8 20.7 21.7 0.2 20.3 20.1 20.2 0.4

TABLE I. Fitted parameters for the turbulent convection data, with the Rayleigh number spanning the
range 63108 to 5.831014. The parametersa and b characterize the probability density function
P(DT,R), anda1 is the coefficient of the first nonlinear contribution to the expansion of the conditional
averageH(DT,R) in DT. The separationR is measured in units of the sampling time. The value of the
parametera1 measures the deviation of the coefficientsCn from unity, cf. Eq. ~28!. The combination
a1ab measures the deviation of the conditional average from the linear fit atDT51, cf. Eq.~38!.

Ra R 8 16 32 64 128 256 512 1024 2048

63108 b 0.54 0.64 0.71 0.95 1.06 1.31 1.74 1.84 —
100a1 240.3 222.8 216.5 212.9 28 217.6 27.3 216.7 —

100a1ab 2116 257 237.2 224.9 214.3 214.3 24.4 210.0 —
43109 b 0.52 0.67 0.85 1.05 1.19 1.41 1.81 2.00

100a1 224.8 214.6 212.8 25.4 27.2 26.3 23.1 216.4
100a1ab 268 233.4 222.4 28.7 29.0 28.1 22.6 210.0 a

7.331010 b 0.61 0.68 0.80 0.91 1.15 1.38 1.55 1.68
100a1 — 29.1 27.3 27.1 21.1 216.3 212.1 214.8 25.7

100a1ab — 224.5 217.6 212.1 23.3 215.5 29.5 211.1 23.0
631011 b 0.60 0.65 0.72 0.84 0.96 1.19 1.50 1.43

100a1 26.9 22.8 214.0 212.9 210.9 213.7 24.4 214.2
100a1ab 218.8 29.1 227.1 220.6 271.0 215.7 24.7 211.6

6.731012 b — 0.58 0.64 0.72 0.83 0.94 1.00 1.25 1.45
100a1 27.1 220.4 217.5 28.2 26.7 23.9 27.1 28.1

100a1ab 222.9 248.1 234.9 214.4 212.4 29.6 29.5 27.6
4.131013 b 0.61 0.68 0.77 0.86 0.88 1.15 1.26 1.42

100a1 22.9 21.5 20.5 22.3 21.2 20.7 230.7 210.5
100a1ab 6.4 24.7 21.9 26.0 22.4 22.4 222.5 29.4

5.831014 b 0.59 0.63 0.69 0.85 0.93 1.05 1.31 1.56
100a1 24.7 22.6 24.5 25.3 20.4 22.5 28.7 23.1

100a1ab 210.9 24.7 26.0 24.6 21.0 24.3 28.9 22.8
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IV. CONCLUSIONS

We presented a theoretical analysis of the relation be-
tween the two conditional averagesH(DT,R) and
G(DT,R) and the probability distribution function
P(DT,R). The general relation is given by Eq.~17!. From
this relation it follows that if one of these averages factorizes
to a function ofDT times a function ofR, the other cannot
factorize as long as the distribution function does not factor-
ize. The latter cannot factorize in any multiscaling statistics.
Next we presented evidence that the conditional average
H(DT,R) does factorize into a function ofR timesDT. This
appears to be the case for both passive and active scalars
when the Reynolds number is sufficiently large, and when
R is in the bulk of the inertial range. The fusion rules which
are believed to hold in a wide context furnish a prediction
about the function ofR that precedesDT in the conditional

average, cf. Eq.~30!. The data support the prediction of the
fusion rules to very high accuracy. We do not at present have
a theoreticalab initio derivation of the linear dependence
that seems to be supported by the data. In view of the im-
portance of this law for the study of the balance equation
Dn(R)5Jn(R) it seems to us that such a derivation is highly
desirable.
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