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Conditional statistics in scalar turbulence: Theory versus experiment
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We consider turbulent advection of a scalar fidl¢f), passive or active, and focus on the statistics of
gradient fields conditioned on scalar differenc®€$(R) across a scal®. In particular we focus on two
conditional average&V2T|AT(R)) and{|[VT|]|AT(R)). We find exact relations between these averages, and
with the help of the fusion rules we propose a general representation for these objects in terms of the
probability density functiorP(AT,R) of AT(R). These results offer a way to analyze experimental data that
is presented in this paper. The main question that we ask is whether the conditional %HBQET(R)) is
linear inAT. We show that there exists a dimensionless parameter which governs the deviation from linearity.
The data analysis indicates that this parameter is very small for passive scalar advection, and is generally a
decreasing function of the Rayleigh number for the convection §&t063 -651X%96)11312-X]

PACS numbd(s): 47.27—i

. INTRODUCTION Jn(R)==2nk(V2T(r,0)[AT(r,r',t)]"" Y. (5)

The equations of motion in fluid mechanics, be they for
the velocity fieldu(r,t) or for a scalar field like the tempera-
ture T(r,t), contain interaction terms lika-Vu or u-VT,
and dissipative terms like'V?u or «V2T, with v and «
being the kinematic viscosity and the scalar diffusivity, re-
spectively. Accordingly, when one attempts to derive
theory of correlation functions of the field or of field differ-
ences across a length scéte one runs into mixed correla-

tion functions of the Laplacian of the field with the field .\ - .
. o — .. within the inertial range, one cannot get rid &f(R). The
itself. The Laplacian introduces a dependence on d|55|pat|v|t|emit «—0 does not h%lp;]n has a finit(g value‘ﬂiﬁ(tr?is limit.

scales, and it is not obvious how to construct a closed theory X . .
. . . w2 A second fundamental approach which avoids this diffi-
in terms of correlation functions that depend on "inertial culty [1] employs multipoint correlation function of field dif-

distances only. At this point there are two fundamentally, Y ploy b

different approaches that we want to expose first. We exemf-e rences. Starting from the same field differences

plify these approaches in the context of turbulent advection,AT(rl’rl’t)' one defines the correlation function
but similar considerations also apply to Navier-Stokes turbu-
lence.

One fundamental strategy, which is the more usual one, ig ., depends om fields AT, =AT(r; .1 ,t), 2n coordi-

to consider the structure functions of the field differenceshatesr. ¢/ and timet. The equation o{‘ 'mjo’tion fafF. 100ks
Denoting AT(r,r’,t)=T(r',t)—T(r,t), the structure func- 1 ‘ q n

tions S,(R,t) are defined by superficially similar to Eq(3):

In the stationary stat&,(R,t)—S,(R), D,(R,t)—D,(R),
and J,(R,t)—J,(R), and we have a “balance equation”
Dn(R)=Jn(R).

The obvious advantage of this approach is that it involves
objects that depend on one coordinB®nly. On the other
3hand the analysis of the balance equation requires a theory of
theviscoustermJ,, which involves a correlation between the
Laplacian of the field and field differences. Even wieis

Fo=Fo(ra,ry; oot i) =(ATq, .. .AT,),  (6)

! J— ! af
Sy(RY)=([AT(r,r",t)]™, R=|R|=|r"—1|, (1 a_tr1+D“:‘7”’ )
where the homogeneity and isotropy of the ensemble were
assumed. Using the advection equation where
aT Dy=Dn(r1,r1; o5t
S TuVT= kV?2T, )

n
= ATy ... [u(r)) -V T(r!
one can derive the equation of motion By(R,t): i§=:1 (ATy... [u(r)- vy T(r)
dSH(R,t) —u(ry)-ViT(rp]...ATy), 8
T—i—Dn(R,t):Jn(R,t), 3
Tn=T(r,r; .. rp, it
where n

— 2 2 )
Dn(R,H)=2n([u(r,t)- VAT(r,t)JJAT(r,r',t)]"" %), (4) _K,-gl(viwi’xﬂl”'“’"'AT“>' ©
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In the stationary state we again face a ““generalized balancexperimental data analysis, that this form of the conditional
equation”D,= 7, . In fact, there is a fundamental difference average is obeyed in a context that is much wider than the
between the two approaches. In the present case one c#maichnan model. Experiments on turbulent advection were
analyze the generalized balance equation, keeping all thenalyzed, and good agreement with Efj2) was demon-
separations within the inertial interval of scales. Then we carstrated. The aim of this paper is to present further theoretical
take the limitk— 0 and show[1] that the dissipative term and data analysis in this direction. We want to understand
J, vanishes in the limit. We remain in this limit with a what can be said on conditional averages in terms of funda-
homogeneous equatidh,= 0, without any Laplacian terms. mental theory, and how to analyze experimental data intelli-
The advantage is that in principle we have a complete theorgently to probe these important quantities.

without the need of additional input. The obvious disadvan- It should be pointed out that although we focus in this
tage of this approach is that we have functions of many varipaper on turbulent advection, similar considerations are also
ables. Nevertheless, this approach turned out to be very us#nportant in the context of Navier-Stokes turbulence. Also in
ful in the context of Kraichnan’s model for passive scalarthat case, two fundamental strategies to develop a statistical
advection [2], where the homogeneous equation can begheory are open to us. The second strategy is even more
turned into a linear partial differential equation for the cor-tempting in that context. In the first approach one obtains
relation functions,. However even in this simplest pos- objects depending on one coordinate, but a hierarchy of
sible case the difficulty incurred by having functions of manyequations relating different ordéin powers of the velocity
variables led to contradicting arguments about the relevarfield) correlation functions. The second strategy gives a
physical solution. A number of groups attempted a perturbatheory involving many coordinates, but in which we can also
tive solution around tractable limi{8,4], and found results neglect the viscous term, obtaining homogeneous equations
that were in contradiction with numerical simulations andD,=0 that involve only one order of correlation functions.
other theoretical argumen[§,6], including nonperturbative We are not going to explore this issue further, and refer the
ones[7]. The final answer is not yet at hand. reader tg 1] for more details.

It is thus obviously useful to find ways to analyze the The paper is organized as follows: In Sec. Il we present
simpler version in which we have one variable only, but atheoretical considerations that relate conditional averages
mixture of inertial and dissipative scales contributing to thewith the probability density function. The fusion rules are
correlation functionJ,,. To proceed we need additional in- employed to develop a general representation of the condi-
formation. One possible way of inputting this information is tional averagé10) in terms of the pdf oA T(R). It is shown
in the language of conditional averages. To see this, considé¢hat in generaH(AT,R) can be written as an expansion in

the mean value of the V2T condition onAT: noninteger powers oAT, with the first term being linear,
and with dimensionless coefficients that are denoted

H(AT,R)=x(VZT(r)|AT(r,r")). (10 ag,a;..., seeEgs. (22) and (23). In Sec. Il we analyze
) ) L ) experimental data of passive and active scalar advection,
Using this definition, we rewritd,(R) as with the aim of understanding whether the linear term in our
expansion is leading, and whether the rest of the series is
Jo(R)= —2nf dATP(AT,R)[AT]" H(AT,R), (12) unnecessary. We offer conclusions in Sec. IV: it turns out

that for passive scalar advection the linear fits are excellent,
whereas in the case of active convection the linear form ap-
pears to fit the data extremely well for high values of the
Rayleigh numbergRa). For lower values of Ra there are
significant nonlinear contributions, and we show that the pro-
posed method of data analysis offers excellent fits to the

whereP(AT,R) is the probability density functiofpdf) to
find a temperature differencRT across a separatioR. It
was proposed by Kraichnd®] that the conditional average
H(AT,R) exhibits in his model a very simple functional de-
pendence oA T and onR, i.e.,

data.
H(AT,R) = 22 T(R) (12)
' 45,(R) - Il. CONDITIONAL AVERAGES
) _ ) ) _ AND THE RELATIONS BETWEEN THEM

If this were true,J,(R) could immediately be written in
terms of structure functions, A. Conditional average of the dissipation field

3 R In addition to the conditional averad&0), we will con-

Jo(R) = NJ2Sh(R) _ (13) sider the average of the scalar dissipation fiel&¥ T|? con-

2S,(R) ditioned onAT:

This again closes the theory upon itself, allowing one to G(AT,R)=«(|VTI?|AT(r,r")). (14)

proceed in terms of objects that depend on inertial scales
only. In the Kraichnan modelD, can also be written in

terms ofS,(R) [see Eq.25) below] and one can therefore
find the scaling exponents that characterize the structu
functions. Unfortunately there is still no derivation of the
ansatz12). There are indications that it is obeyed; numerical
simulations of the Kraichnan model support it rather con-
vincingly [5]. In addition, it was shown if9], on the basis of Jn(R)~=2n(n—1)k{|[VT(r)[2[AT(r,r")]""%). (15

This conditional average appears naturally in the analysis of
r%“(R)' For space homogeneous statistics one can move one
gradient around in the definitiof®) and, forR in the inertial
range, obtain
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Accordingly, we can write a second equation in terms of theerties of the driving velocity field. The experimental results
probability density function analyzed in[9] strongly indicate that this is the case in a
wide context of turbulent scalar fields. With this in mind we

J(R) = —2n(n—1)f dATP(AT,R)[AT]" 2G(AT,R). Wt

(16) In(R)~=2xn[VF _Sy(12)l;,,= 5]Su(R)/S(R).  (20)

By equating Eqs(16) and (1), we find an infinite 'se't Of. Using the fact that the mean of the scalar dissipation field,
integral constraints on the conditional averages. This implies

it > )
that the two conditional averagés and G must be univer- degotled tf{ flst tr]e\{[qlua:;ed. at:'; | &K[YQPS_Z(E’ZL‘E 7l
sally related in order to satisfy these constraints for any valugn.tea so the fact that in the inertial randgR) = —4e, we
of n. The required relationship involves the pBE{AT,R) wii
and has the following form:

g NCydoSn(R)

25(R)
(17) where C, is an as yet unknown dimensionless coefficient,

but C,=1. Equation(21) was suggested for Kraichnan's
as can be checked by direct substitution. A formula of thisnodel in[8] and derived in6]. We proposed if9] that it

Jy(R)= (21

H(AT,R)P(AT,R)=— MLT[G(AT,R)P(AT,R)],

form has been discussed before if]. holds in a much wider context, and showed experimental
data in support.
B. Fusion rules and their consequences HaV'ng I’esu|t(21), we see that the Sca“ng exponent Of

. i . Jn(R) is fixed as{,— {,. One way to understand this is to

An additional constraint on the conditional averages car,qq me that indeed E€L2) is always valid, and to use it in
be obtained using the “fusion rules” that were derived re- Eq. (11) to derive this scaling law. In this case EQ1) is
fecovered with the constraint that the coefficie@tsare all
Jnity, and in particulan-independent. However, we need to
llow for the possibility that Eq(12) is incorrect, and find
alternative representations of the conditional average that
agree with the scaling lau21). This is the subject of the
next subsection.

two fundamental approaches described in Sec. |. Specif
cally, the fusion rules address the asymptotic properties o
F, when a group op points,p<n—1 tend toward a com-
mon pointry (|ri—rg|~p for all i<p), while all the other
coordinates remain at a larger distancB from

ro (Jri—ro|~R for i>p, andR>p). For our particular pur-
?uossigﬁ \pl)vr%gees? to writé,(R) as the result of the following C. Series expansion of the conditional average

Let us reject for the time being the possibility that

In(R)==2nklim lim VZF(ry,ris...rp,rp). H(AT,R) is proportional toAT(R) with a coefficient de-
770 1/ —rg+R pending only orR. Alternatively, let us consider the follow-
(18)  ing model expression fad (AT,R):
The fusion rules that should be used in such cases were dis- J, f;{AT P(AT,R)}
played in great detail ifil] in the context of Navier-Stokes H(AT,R)=— (22)

turbulence. They also apply identically to this case. Basically 45(R)  P(AT.R)

it was shown that all the fusions without gradients in this
case have regular limits, relating, with S,. The fusions
with gradients require special care of the limit
r.,=r,—r,—0. The intermediate result, f&t in the inertial

Here we introduce the dimensionless operaf’uoacting on
the variableAT(R) as a sum of differential operators:

. ~ * a (7 p
range, is - P p
L pgo o &AT} (AT)P. (23
In(R)~=2n« lim V7 Sy(r1) Sy(R)/S(R). (19
r12—0 In this representation there is the freedom of a countable set

of dimensionless coefficients, .

From the dimensional point of viewi(AT,R) in Eq.
22) is of the order ofAT, but it has a more complicated
unctional dependence o&T andR, expressed in terms of
the pdf P(AT,R) with the help of operato. Computing
J,(r) with H given by Eq.(22), one obtains Eq.21), as one
should, but with coefficient€,, given by

In evaluating this quantity we interpret the limi,—0 as a
limit r{,— 5. This seems natural for large Peclet numbers(
when »—0. It is important however to stress that there is ay
hidden assumption here. We expect the functi6y), to
change its analytic behavior as a function of,. This
change occurs at the viscous crossover sgal€he issue is
whether this crossover scale msand R independent. That
this is so has beeprovenfor Kraichnan's model of turbulent -1/,

advection[11], and that this isot so has been proven for C.= E ( )(_l)pa ) (24)
Navier-Stokes turbulencil]. We believe that this is more " 550 P

generally true in scalar advection due to the linearity of the

equation of motior(2), independently of the statistical prop- Here
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n-1 (n—1)! any general requirement about the scaling exponents. In fact,
i ——T this can be easily done. For example, choageof the fol-
P p: P ' lowing form:

are binomial coefficients. We have one obvious constraint,
i.e.,C,=ag—a;=1. One sees that by an appropriate choice ap= 2 B 1—exp(— ag) [P+ Spopt — Sp1 7, (31
of a,, an arbitrary dependence Gf, onn is possible. s
To exemplify the consequences of this extra freedom, We 4 substitute in Eq24). The result is

will next analyze the implications it has on the scaling expo- '
nents of the Kraichnan model of passive scalar convected by n-1
an infinitely fast Gaussian velocity field. In this case the termC =y + (n—1)v+ 2
D,(R) is known exactly, p=0

n—-1
0 )E Bs(e”%s—1)P. (32

B d Finally it gives

D,(R)= —Rd—“lhi R (25)

n - ﬁi—_l dr dRS’I( );
Co=p+(n—1v+2 Bexd—(n—Dagl, (33

where(,, is the parameter of the model<¥,<2, andB is s

a dimensional constant. Using the balance equation and Wity satisfies the constraint

ing S,(R)*R*n, one computes

(n=3\(d=5)*+2nd0,Co—3(d=Lz).  (26) Co=pt vt 2 Bsexp(—ag)=1. (34

If all coefficientsay=1) are zero, thert€,=1 and we have |n the limit n>max1/a.], we find
Kraichnan’s conjecture fof,,:

{n=3V(d— )2+ 2nddo[ w+(n—1)v]—3(d— o).
§n=%\/(d—§2)2+2nd§2—%(d—§2), (27) (35

which dictates the “square-root’” asymptotic behavior This form again has an asymptotic linear dependencé, of
{y—NAZ,/2 in the limit n—c. Assume now that onlp,  ON N, but for intermediate values of these exponents differ

anda, are nonzero. From Eq24), C,=a,—(n—1)a,, or significantly from Eq.(29). We do not ascribe particular im-
portance to this result, and exhibit it only to show that, to
C,=1-(n—2)ay, (28)  satisfy the consequences of the fusion rules, in general we
have considerable freedom in the functional dependence of
and if we use this result in the Kraichnan model we obtain &n 0N N.
It is important to understand now that the ser{@g) is
(o= 3Jd= )2+ 2nds[1—(n—2)a,]— (d—¢,).  (29)  actually an expansion inoninteger powersf AT. As such,
it is fundamentally different from the series proposed in Ref.

Now the asymptotics of, in n are linear:{,<n—a;, for [5_], which is in intege_:rpowers. The noninteger powers are
n—c. Notice that in this cases, has to be negative. It is dictated by the functional form of the p@(AT,R), which

interesting to note that the assumption that only the first thre) 9eneral is nonanalytic. In order to see this clearly, we
coefficientsa,, a;, and a, are nonzero would lead to the Consider, for example, a forR(AT,R) that has been found
conclusion that,n32 which is not allowed in view of the [12] to fit very well the experimental data for turbulent tem-
n L] . . . .

Hoelder inequalities for the scaling exponents. Similarly, ond?€rature fluctuations. For different separatiéhisthe pdf.|s
cannot truncate serig@3) at any higher term. Hence only described by the following stretched-exponential form:
three possibilities are allowed for this representation of the
conditional average:

(i) Only ay is nonzero, and we have Kraichnan’s expo-
nents(27). In this case we expect to findlimear law

P(AT,R)=C(R)exd — a(R)|AT|F®]. (36)

Substitution of this into Eq(22) gives a series imoninteger
powers of AT which originate from the differentiation of

3 (AT)A. Any attempt to reexpand the series inT)™? for
2

H(AT,R)=— AT(R). (30)  honintegerg in integerpowers ofAT leads unavoidably to a
4S,(R) series with zero radius of convergence.
(ii) Only ag anda,; are nonzero, and we have the expo- lll. IS THE CONDITIONAL AVERAGE H(AT.R)

nent(29). Note that Eq(28) determines the coefficient,

. . . . . LINEAR OR NONLINEAR IN AT?
in this case, and the magnitude of the dimensionless param-

etera; measures the deviation &f, from unity. We will see As we already saw, the present state of the theory does
below that in all high Re data; seems to be smaller than not allow anab initio determination of the functional depen-
102 dence of the conditional averageon AT. Accordingly, we

(iii) There is an infinite set of nonzero coefficients. now turn to analyzing experimental data to shed light on this

It is interesting to ask whether one can come up with arissue. As explained, the conditional averdtfeA T,R) is lin-
example of infinitely many coefficients, without violating  ear inAT if and only if all the coefficients except, are zero
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[i.e. possibility (i) discussed in Sec. ]Il For the other two
cases,H(AT,R) is a nonlinear function oAT. In earlier
work [9], we found thatH(AT,R) is close to a linear func-
tion of AT, which implies that,,p#0 are small compared

to ap. To make more quantitative statements, we will per-
form a further analysis of the experimental data under the
assumption thaa, anda,; are nonzero. We will see that this
form fits the data extremely well, and that the coefficient
a, is always small, and it appears to become smaller when
the Reynolds number is increasing and when the chosen
separation goes into the bulk of the inertial interval. Taking
ap anda, as the only nonzero coefficients, we find

logl, (R)/2nx]

4 6 8 10

2
logl(J, 72x)S,, (R)/S,(R)|

12

AT

45;(R)

J[INP(AT,R)]

H(AT,R)= AT

(apgt+2a;)+a,AT

FIG. 1. A plot of INJ,(R)/(2nk)| vs In|(2«) ~13,S,0(R)/S,(R)| for
n=2 (squarey 3 (triangles, 4 (diamonds, 5 (starg, and 6(circles
andR in the inertial range. The data are taken from Y{dl8]. The
line (slope 1 and intercept)ds not a fit but is the theoretical ex-
pectation(21) with C,=1. The logarithms are to base

(37

Thus the coefficiend, indeed measures how nonling4ris.
Using form(36) for the pdfP(AT,R), H can be rewritten as

—J,AT

H(AT,R)= [(1+3ay)—a;a(RIB(R)AT[AF],

is

45,(R) .

in whichay=1+a, is used. WherP(AT,R) is asymmetric,
a more general form with different and 8 for AT>0 and
AT<O0 has to be used. Note that if we measi\fE in units
of its standard deviatiofas we do below in the data analy-
sig), then the combination of parametersa(R) B(R) gives

cients C,, obtained by dividing J,,(R) by
nJ,S,,(R)/S,(R) for all the available valuea andR. The
result of such a test is shown in Fig. 2.

We see that all the measured valuesGaf, are concen-
trated within the interval (0.75,1) for separations within the
inertial interval. Considering the fact that the quantities
themselves vary in this region over five orders of magnitude,
we interpret this as a good indication for the independence of

a direct measure of the importance of the nonlinear correce,, of R andn. The R independence is very clear, and is a

tion in this equation foAT=1.

A. Linear fits

direct test of the fusion rules. The wealkdependence seems
to indicate thatC,,, decreases slightly with; this may arise
from the limited accuracy of the data. We are reluctant to
make a strong claim about the accuracy of tenth- or twelfth-

We begin the discussion of experimental data by demon |rder structure functions. If we accept for now the evidence

strating that in the case of passive scalar advection the Iine%} . . . :
- . at the coefficientC,,, in Eq. (21) are n independent, it
form of the conditional averageél(AT,R) is observed to must also imply that the conditional averagAT.R) is

high precision. First we examine the theoretical prediction"near AT
(21). The results show that to a good accurdty-1 for all In Fig. 3 we present results from the same data set that

n andR [9] as used above. We show the conditional average

We use temperature data measured in the wake of . .
heated cylindef13]. Air of speed 5 m/s flowed past a heated \é:(AT’R) as a function oA T(R) for various values oR.

cylinder of diameter 19 mniReynolds number 95810%).
The temperature was measured at a fixed point downstream
of the cylinder on the wake centerline. The cylinder was
heated so slightly that the buoyancy term was unimportant
and the temperature acted as a passive scalar. Temperature
was measured as a function of time, and here we use the
standard Taylor hypothesis that surrogates time derivatives
for space derivatives. In doing so we made sure that
the viscous scales are properly resolved in this data set. In
Fig. 1 we display J,,(R)/(2nk) as a function of

(2x) ~13,S,,(R)/S,(R) for n varying from 2 to 6, and for
various R values in the inertial range. We see that all the
points fall on a line whose slope is unity to high accuracy,
and whose intercefin log-log ploY is very closely zero. As

was pointed out if9], this good agreement is a confirmation

of the validity of the fusion rules. It should be stressed that
individual tests at various values of as a function ofR

2.0

S gpgespeegs

0.5 r

0.0

100 1000
R

1 10 10000

FIG. 2. A detailed test of the coefficie,, ; see text for de-
tails. The symbols are the same as in Fig. 1. The small systematic
corroborate the same conclusion, i.e., E21) is supported  decrease of,, with n may be due to insufficient accuracy at the
by the experimental data, wit,, being near unity. The tails of the probability density function which becomes more im-
most sensitive test of the alleged constancy of the coeffiportant at large values of.
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FIG. 3. The conditional averagd(AT,R) measured from the ¥
Yale datd 10] normalized by the measured value-68,/4S,(R) as B s 4 6 e 4 2 o 2 4 e
a function of AT(R) for three different values oR measured in AT AT
units of the sampling time. The differeRtvalues are designated by
triangles R=16), squaresR=128), and circles R=1024), re- FIG. 4. The conditional averagel(AT,R) as a function of
spectively. AT for the turbulent convection data. Shown are representative fits

of formula(38) at four values of Ra with the separatiBmeasured
The line passing through the data points is not a fit, but rathein units of sampling time using Taylor hypothesis. One sees that the
the line required by Eq30). We note that points belonging linear fit becomes better as Ra increases; see Table | for a quanti-
to different values oR fall on the same line, indicating that tative confirmation
indeed the conditional averade¢ is a function of AT(R)
times a function ofR, and that we identified correctly the
function of R as —J,/4S,(R).

B. Nonlinear fits 10

As explained, the linearity of the conditional average of
H in AT [Eq. (30)] was not derived from first principles. We
therefore proceed now to see whether the more general form

(38) is supported by the data, and whether we can bound S

from above the values of the parametgr To estimatea, -10

from experimental data, we first estimai€R) and B(R) 8

from the pdf's evaluated from data using Eg6) then plot

—4H(AT,R)S,(R)/[J,ATI]E versugAT|A#(R)_ The intercept N 10

is given by 1+ 3a;. To study how well Eq(38) can repre- & 5

sent the data, we subsitute the estimated valugg dfito Eq. “' 9

(38) and compare it with the experimental data. Since the ‘é 5

passive scalar data shown in Fig. 3 agree so well with the a

linear ansatz, we first discuss a case that offers a more strin- & 10

gent test of the forni38). To this aim we consider data taken '

from convective turbulence. In this case the temperature is an 10

active rather than a passive scalar. The data are taken from

the well documented Chicago experimg¢tg,15. The ex- 5 J
periment was performed in a cylindrical box of helium gas 0

heated from below, and Ra can be as high &S.the box 5 *
has a diameter of 20 cm and a height of 40 cm. The tem-

perature at the center of the box was measured as a function '10_8 5 4 =2 0 2 4 6 8
of time, and we use the same Taylor hypothesis to surrogate AT

time for the spatial coordinate. Figure 4 display the condi-

tional average(AT,R) computed from these data for three (. 5. The conditional averagll(AT,R) as a function of
different values of Ra, witliR measured in units of the sam- AT for the passive scalar data at three values of the sepaftion
pling time. We see that Eq38) is always a good form for (from top to bottomR=128, 256, and 512), measured in units of
describing the experimental data. It is interesting to examingampling time. The nonlinear fitsolid lineg are indistinguishable
how the nonlinearity in the conditional average depends oifrom the linear onegdotted lineg in the bulk of the inertial range,
Ra and on the value d®. In Table | we present a compila- and see Table Il for a quantitative confirmation
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TABLE |I. Fitted parameters for the turbulent convection data, with the Rayleigh humber spanning the
range 6x10° to 5.8x10" The parametersa and 8 characterize the probability density function
P(AT,R), anda, is the coefficient of the first nonlinear contribution to the expansion of the conditional
averageH(AT,R) in AT. The separatiorR is measured in units of the sampling time. The value of the
parametera; measures the deviation of the coefficie@g from unity, cf. Eq.(28). The combination
a,aB measures the deviation of the conditional average from the linear 4ifat1, cf. Eq.(398).

Ra R 8 16 32 64 128 256 512 1024 2048
6x 10° B 054 064 071 095 1.06 131 174 1.84 —
100a, —40.3 -22.8 -165 -129 -8 -176 -73 —16.7 —
100a,08 —116 —57 —37.2 —249 -143 -143 —-44 -10.0 —
4%10° B 052 067 085 1.05 119 141 181 2.00
100a; —248 —-146 -128 -54 -72 -63 -31 -164
108,08 —68 —334 —-224 -87 -90 -81 -26 -100a
7.3x10% B 061 068 080 091 115 1.38 1.55 1.68
1008, —  -91 -73 -71 -11 -163 -121 -148 -57
108,08 —  —245 -176 —-121 -33 -155 -95 —11.1 -3.0
6x 101 B 060 065 072 084 096 1.19 1.50 1.43
1008, -69 -28 -140 -129 -109 -13.7 -—-44 -—142
1008, a3 -188 -91 -271 -206 -71.0 —-157 —-47 -116
6.7x10% B — 058 064 072 0.83 094 1.00 1.25 1.45
1008, -71 -204 -175 -82 -67 -39 -71 -81
1008, a8 —229 —-481 -349 -144 -124 -96 —-95 -—76
4.1x 105 B 061 068 077 086 088 115 1.26 1.42
1008, -29 -15 -05 -23 -12 -07 -307 -105
1008, a8 64 —47 -19 -60 -24 -24 -225 -94
5.8x 10* B 059 063 069 085 093 1.05 1.31 1.56
1008, —-47 -26 -45 -53 -04 -25 -87 -31
1008, a3 -109 -47 -60 -46 -10 -43 -89 -28

tion of the best fits for the parameters for a range of values opdf's P(AT,R) are not symmeteric idAT. Accordingly we
Ra, and for a range of values &. The results appear to need to fit separately the left and right branches of the dis-
support the following conclusiongl) the value ofa; gen-  tribution functions, and find the parametess , a_, B
erally decreases when Ra increases; @the value ofa; is  and 8_, together with the appropriate values @f;}, and
smaller, and remains approximately constant when the sep@a,)_ . After doing all this we show the fits in Fig. 5. It
rationR is deep inside the inertial range. _ appears to the eye that the quality of the fits is not signifi-
A good way to have a quick estimate of the importance ofcantly improved compared to the linear fit. To see this more
the nonlinear ternficf. Eq. (38)] is to measur@, a8, which  ¢jeary, in Table Il we present the values of all the param-

is the coefficient of the nonlinear term. We see that thisyers jnvolved in the fit. It is seen that the values of the
coefficient decreases significantly when we go from Raparametersal are close to zero, or, more precisely,

=6.0x10% to Ra=5.8x 10", becoming about 0.01 in the " .
middle of the inertial range. a;, =0%0.02. The coefficient that measures the importance

Next we show similar detailed calculations for the passiveof the nonlinear correction, i.eq,af is of the order of
scalar data of Fig. 3. There is a slight complication since thel0™* for all the separations in the bulk of the inertial range.

TABLE Il. Fitted parameters for the nonlinear fits in the passive advection data with Reynolds number
9.5x 10%. The probability density functioR(AT,R) is asymmetric in this case, and we fit separately the left
(minus subscriptand right(plus subscriptwings. All the parameters that measure the deviation from the
linear fits are very small.

R 8 16 32 64 128 256 512 1024
B_ 0.94 1.12 1.28 1.54 1.77 1.85 1.76 1.86
B 1.15 1.32 1.56 1.63 1.75 1.82 1.87 1.82
106%(a,) 21 67 11 12 -3 9 10 -5
10%(ay) ¢ 18 14 -1 19 -6 6 0.6 12
103(ajaB) 10 16 3 1 -0.4 0. 0.2 -0.4
10%(a,apB) ; 1.8 -0.7 -1.7 0.2 -0.3 -0.1 -0.2 0.4
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IV. CONCLUSIONS average, cf. Eq(30). The data support the prediction of the

. . . fusion rules to very high accuracy. We do not at present have
We presented a theoretical analysis of the relation be: : P, e :
tween the two conditional average$!(AT.R) and a theoreticalab initio derivation of the linear dependence

G(AT,R) and the probability distribution function that seems to be supported by the data. In view of the im-

A portance of this law for the study of the balance equation
P(.AT’R).' The general rel_atlon is given by E(L7). From D,(R)=J,(R) it seems to us that such a derivation is highly
this relation it follows that if one of these averages factorlzesd esirable
to a function ofAT times a function ofR, the other cannot '
_factorlze as long as the dlst_rlbu_tlon functlo_n do:_as not f_ac_tor- ACKNOWLEDGMENTS
ize. The latter cannot factorize in any multiscaling statistics.
Next we presented evidence that the conditional average This work was supported in part by the German Israeli
H(AT,R) does factorize into a function & timesAT. This  Foundation, the U.S.-Israel Binational Science Foundation,
appears to be the case for both passive and active scalatee Minerva Center for Nonlinear Physics, and the Naftali
when the Reynolds number is sufficiently large, and wherand Anna Backenroth-Bronicki Fund for Research in Chaos
R is in the bulk of the inertial range. The fusion rules which and Complexity. The work of E.S.C.C. is also supported by
are believed to hold in a wide context furnish a predictionthe Hong Kong Research Grants Coun@rant No. 458/
about the function oR that precedeaT in the conditional 95P.

[1] V. S. L'vov and I. Procaccia, Phys. Rev.33, 6268(1990. [9] E. S. C. Ching, V. S. L'vov, and I. Procaccia, Phys. Re\b4:

[2] R. H. Kraichnan, Phys. Fluid$l, 945(1968. R4520(1996.

[3] K. Gawedzki and A. Kupiainen, Phys. Rev. Left5, 3608  [10] E. S. C. Ching, Phys. Rev. &3, 5899(1996.
(1995. [11] V. S. L'vov and I. Procaccia, Phys. Rev. Lets, 2896(1996.

[4] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, [12] See, for example, E. S. C. Ching, Phys. Rev.44 3622
Phys. Rev. 52, 4924(1995. (1991).

[5] R. H. Kraichnan, V. Yakhot, and S. Chen, Phys. Rev. L& [13] The data were obtained from K. R. Sreenivasan, Yale Univer-
240(1995. sity.

[6] A. Fairhall, O. Gat, V. S. L'vov, and I|. Procaccia, Phys. Rev. [14] F. Heslot, B. Castaing, and A. Libchaber, Phys. Rev3@\
E 53, 3518(1996. 5870(1987).

[7] O. Gat, V. S. L’v_ov, E. Podivilov, and |. Procaccia, Phys. Rev. [15] M. Sano, X.-Z Wu, and A. Libchaber, Phys. Rev.48, 6421
Lett. (to be published (1989

[8] R. H. Kraichnan, Phys. Rev. Leff2, 1016(1994.



